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Pseudomonas aeruginosa

* Opportunistic pathogen

e Common infections in cancer
patients, cystic fibrosis ...

* Biofilm / Swarming behaviour
* Surfactant secretion @
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 Natural surfactants ?? Q?? Q??

e Decrease surface tension

A. Phenotype assay for P. aeruginosa surfactant secretion B. Validation on strain PA14 and its engineered mutants
N . Surfactant secretion:
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Secondary metabolism

* Relevant for social and ecological interactions

* Surfactant secretion benefits:
* Motility / Swarming
* Killing competitors
* Breaching the epithelial barriers of a host
* Benefit = population, Cost = individual (rB>C)

* Synthesis is highly regulated (Metabolic Prudence strategy):
* Quorum sensing
* Nutrients available (high C/N ratio)



Surfactant production varies inconsistently
across the phylogenetic tree

» 28 strains isolated from infected cancer patients (and 3 reference
strains)

* Phylogenetic tree from sequence variations in core genome
* Rhamnolipid synthesis genes conserved across all strains

C. Ability to make surfactants from glycerol varies among P. aeruginosa isolated from infected patients
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Accessory genome does not explain
surfactant secretion phenotype

% : Surfactant
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Surfactant secretion lost in strains with
slower exponential growth

* Growth on glycerol minimal
media

e Growth curves reached similar
maximum densities

* Main difference is growth rate
In the beginning of exponential
phase

* Surfactants are usually
produced and secreted only at
the end of exponential phase
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Metabolomics shows differences associated
with loss of surfactant production

* OPLS-DA was able to separate
producers from non-producers
using metabolite profiles

* 15 metabolites had significant
differences between groups

* associated with enzymes
containing ROS sensitive Fe-S
clusters

A

Partial least squares regression of
intracellular metabolomes
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C TCA cycle metabolites associated with surfactants
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Non-producers are worse at reducing
oxidative stress

* Strains were exposed to H,0,
* H,0, was measured through fluorescent sensor

* Both moderate and high surfactant producers were significantly
more efficient at removing H,0,
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Genome scale metabolic model links oxidative
stress, slower growth and lack of surfactants
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A. Rhamnolipid biosynthesis by P. aeruginosa requires
carbon-rich intermediates from the fatty acid and rhamnose
pathways of primary metabolism
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Final thoughts

* To fully understand the connection between genotypes and
phenotypes we need to understand how they evolved

* Different cellular processes and pathways are highly
Interdependent

* Some phenotypes can be influenced by genes that we associate
to apparently unrelated cellular processes
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