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Inference in evolutionary genomics
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R0, infectious period...

Observe homologous sequences.

Infer their evolutionary history: phylogeny, reproduction number...

Relies on probabilistic models that relate data to parameters.
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Statistical inference

Model p(sequences|tree) Point estimate t̂ree

Observed sequences → or

prior p(tree) (optional) posterior p(tree|sequences)

Likelihood-based inference

Maximum likelihood: t̂ree = argmaxtree p(sequences|tree).
Estimate or sample from the posterior p(tree|sequences)
(typically also involves computing p(sequences|tree)).

Likelihood-free inference

Realistic models:

computing p(sequences|tree) is expensive.
But sampling from it can be cheap.
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Likelihood-free inference

Idea: perform inference by sampling, and not evaluating

p(sequences|tree).
Example: Approximate Bayesian Computation (ABC)

From Sunnåker et al. 2013
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Amortized, likelihood-free neural inference
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Learn

Compared to ABC:
No rejection.

No summary statistics.
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Unusual setting for supervised learning

Ordinarily used for induction on real-world data

(adapted from Jumper et al., 2021)

Common misconceptions

Proxy �before we get real data�?

→ simulated data is just our way to access the model.

�What if your model is o��?

→ Valid concern, but not speci�c to neural estimation.
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Neural inference for phylogenetics with Phyloformer
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We need a learnable function that:

outputs a phylogenetic tree,

→ use evolutionary distances as a proxy.

takes as input a set of homologous sequences (MSA)

→ use self-attention.
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Phyloformer overview
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One-hot encoding for aligned sequences

A single sequence:
A A C G T . . .

A 1 1 0 0 0 . . .
C 0 0 1 0 0 . . .
T 0 0 0 0 1 . . .
G 0 0 0 1 0 . . .

A set of aligned sequences:

Our alphabet is actually {A, R, N, D, ..., Y, V, X, -} so d0 = 22.

Laurent Jacob NPE for evolutionary genomics 10 / 26



Encoding pairs of aligned sequences

We choose to work on pairs of sequences (predict distance for each).
We represent each pair by simply averaging over sequences.

A A C G T . . .
A T C C T . . .

A 1 0.5 0 0 0 . . .
C 0 0 1 0.5 0 . . .
T 0 0.5 0 0 1 . . .
G 0 0 0 0.5 0 . . .

We now have a set of
(n
2

)
× L amino acids encoded as Rd=22 vectors.

Laurent Jacob NPE for evolutionary genomics 11 / 26



Encoding pairs of aligned sequences

We choose to work on pairs of sequences (predict distance for each).
We represent each pair by simply averaging over sequences.

A A C G T . . .
A T C C T . . .

A 1 0.5 0 0 0 . . .
C 0 0 1 0.5 0 . . .
T 0 0.5 0 0 1 . . .
G 0 0 0 0.5 0 . . .

We now have a set of
(n
2

)
× L amino acids encoded as Rd=22 vectors.

Laurent Jacob NPE for evolutionary genomics 11 / 26



Accounting for permutation invariance with self-attention
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This has no reason to be

true in general (e.g. linear

function)!

Need to retain some

expressivity.

E.g. average provides

invariance but discards a lot

of information.
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Self-attention in a nutshell

Functions acting on unordered sets

Updates each element as a linear combination of all of them.

Output is a new representation of the same set. Iterate.

Updates

Learnable part: function of two elements, giving weight of one in the

update of the other.

Provides equivariance, modularity to any cardinal.

Iteratively builds a set-aware representation for each pair.
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Axial attention

We need equivariance both across pairs and sites.

Alternate between column- and row-wise attention.

For each site, update each pair using all others.
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Builds a set-aware representation of residuals

�I'm an Alanine� →

�I'm an Alanine,

some homologous sequences have Serines,

many residues in the sequence are

hydrophobic,

this site is conserved,

...�

This representation is optimized with respect to the prediction objective.
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Phyloformer overview
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Final step: predict pairwise distances

Predict one number for each residual.

Pool across sites to obtain a single value per pair.

Loss function happens at this level:

compare to true distance on simulated data.

We then use a distance method to build the tree (not end-to-end).
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Results - Under LG+GC model, PF performs on par with ML
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Results - What about a more complex model ?

N
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∗
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Structure MSA

adapted from 10.1038/s41598-019-55047-4
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We simulate 250 pairs of

adjacent co-evolving sites

We use a 400× 400 substitution

matrix to describe residue

co-evolution, from CherryML

Most ML methods would

consider sites independent
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Results - Under a co-evolution model, PF performs the best
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Results - Inference speed

20 40 60 80 100
Number of leaves

10
1

10
0

10
1

10
2

10
3

E
la

ps
ed

 ti
m

e 
(s

ec
)

FastME

FastTree

IQTree_LG+GC

IQTree_MF

PF+FastME

Phyloformer is the fastest

method

Phyloformer is even faster than

FastME on its own

Inference speed is independent

from model complexity
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Phylodynamics: evolutionary parameter inference

Phylodynamics vs Phylogenetics

So far we have sampled trees from a

parameterized distribution.

These parameters themselves have a
meaning in

epidemiology (R0, duration),
ecology (biodiversi�cation).

Phylodynamics from sequences (skip the tree)

Existing likelihood-free phylodynamics methods start from phylogenies.

Skipping the tree: faster, handles phylogenetic uncertainty

and cases where there is no tree (e.g. recombination).
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Di�erences with Phyloformer

Posterior inference on (R0, duration) with quantile regression

Reminder: argminm
∑

i |m − R i
0| estimates the median of p(R0).

We are interested in the conditional median of p(R0|sequence).
Our network mθ minimizes argminθ

∑
i |mθ(sequencei )− R i

0|.
Generalizes to other quantiles with the pinball loss (asymetric).

Accounting for dates

In epidemiology, we have (and need) dated sequences.

We incorporate this information through positional encodings.

Permutation invariance vs equivariance

We want a single prediction per MSA, not per pair.

We don't form pairs (better scaling).

We use special CLS tokens for global pooling.
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Transformers for EpiDemiological DYnamics (TEDDY)

Setting

Sample R0 ∼ U(1, 5) and duration ∼ U(0.1, 1).
Then 50-leave trees from birth-death(R0, duration)

Then 1000-long sequences from these trees.

Parameter BEAST2 Teddy (ours)

R0 0.18 0.18

duration 0.25 0.26

Time for 1000 runs 17 days 50s

Same relative errors as BEAST2 (SOTA), 1e5 x faster.

95% credible intervals correctly estimated in both cases.
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(Non-)robustness to strong prior misspeci�cation

Network trained on R0 ∈ [1, 5]× γ ∈ [0.1, 1].

Performs poorly on data where R0 ∈ [5, 8]× γ ∈ [1, 3].

But behaves exactly like BEAST2.
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Wrapping up

Summary

Neural inference of evolutionary parameters.

Sequences to tree (Phyloformer), or to upstream parameters (Teddy).

Much faster than likelihood-based alternatives under simple models.

Additionally, more accurate under complex models.

Perspectives

Calibration assessment, full posteriors.

Train and assess networks under more complex models.

End-to-end from sequences to the tree.
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Thank you.
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