Neural networks for likelihood-free inference in evolutionary genomics

Laurent Jacob

Phylogeny and Cophylogeny: Tree for a Tango, November 5th 2024

Acknowledgement

Samuel Alizon

Vincent Garot

Anna Zhukova

Luc Blassel

Luca Nesterenko

Bastien Boussau

Johanna Trost

Inference in evolutionary genomics

- Observe homologous sequences.
- Infer their evolutionary history: phylogeny, reproduction number...

Relies on probabilistic models that relate data to parameters.

Laurent Jacob

 $\begin{array}{ll} \mathsf{Model} \ p(\mathsf{sequences} | \mathsf{tree}) \\ \mathsf{Observed} \ \mathsf{sequences} & \rightarrow \\ \mathsf{prior} \ p(\mathsf{tree}) \ (\mathsf{optional}) \end{array}$

Likelihood-based inference

- Maximum likelihood: $\widehat{\text{tree}} = \arg \max_{\text{tree}} p(\text{sequences}|\text{tree}).$
- Estimate or sample from the posterior p(tree|sequences) (typically also involves computing p(sequences|tree)).

Likelihood-free inference

- Realistic models: computing p(sequences|tree) is expensive.
- But *sampling* from it can be cheap.

Likelihood-free inference

- Idea: perform inference by sampling, and not evaluating p(sequences|tree).
- Example: Approximate Bayesian Computation (ABC)

Amortized, likelihood-free neural inference

Unusual setting for supervised learning

Ordinarily used for induction on real-world data

Common misconceptions

- Proxy "before we get real data"?
- "What if your model is off"?

Unusual setting for supervised learning

Ordinarily used for induction on real-world data

Common misconceptions

- Proxy "before we get real data"?
 - \rightarrow simulated data is just our way to access the model.
- "What if your model is off"?
 - \rightarrow Valid concern, but not specific to neural estimation.

Neural inference for phylogenetics with Phyloformer

We need a learnable function that:

- outputs a phylogenetic tree,
- takes as input a set of homologous sequences (MSA)

Neural inference for phylogenetics with Phyloformer

We need a learnable function that:

- outputs a phylogenetic tree,
 - \rightarrow use evolutionary distances as a proxy.
- takes as input a set of homologous sequences (MSA)
 → use self-attention.

Phyloformer overview

One-hot encoding for aligned sequences

A single sequence:

	Α	Α	С	G	Т	
Α	1	1	0	0	0	
С	0	0	1	0	0	
Т	0	0	0	0	1	
G	0	0	0	1	0	

A set of aligned sequences:

Our alphabet is actually {A, R, N, D, ..., Y, V, X, -} so $d_0 = 22$.

Encoding **pairs** of aligned sequences

We choose to work on pairs of sequences (predict distance for each).We represent each pair by simply averaging over sequences.

	Α	Α	С	G	Т	
	Α	Т	С	С	Т	
Α	1	0.5	0	0	0	
С	0	0	1	0.5	0	
Т	0	0.5	0	0	1	
G	0	0	0	0.5	0	

Encoding **pairs** of aligned sequences

We choose to work on pairs of sequences (predict distance for each).We represent each pair by simply averaging over sequences.

• We now have a set of $\binom{n}{2} \times L$ amino acids encoded as $\mathbb{R}^{d=22}$ vectors.

This has **no reason to be true in general** (*e.g.* linear function)!

Need to retain some expressivity. *E.g.* average provides invariance but discards a lot of information.

Self-attention in a nutshell

Functions acting on unordered sets

- Updates each element as a linear combination of all of them.
- Output is a new representation of the same set. Iterate.

Updates

- Learnable part: function of two elements, giving weight of one in the update of the other.
- Provides equivariance, modularity to any cardinal.
- Iteratively builds a set-aware representation for each pair.

- We need equivariance both across pairs and sites.
- Alternate between column- and row-wise attention.

For each site, update each pair using all others.

- We need equivariance both across pairs and sites.
- Alternate between column- and row-wise attention.

For each pair, update each site using all others.

• ..."

- some homologous sequences have Serines,
- many residues in the sequence are hydrophobic,
- this site is conserved,

This representation is optimized with respect to the prediction objective.

"I'm an Alanine" \rightarrow

Final step: predict pairwise distances

- Predict one number for each residual.
- Pool across sites to obtain a single value per pair.
- Loss function happens at this level: compare to true distance on simulated data.

We then use a distance method to build the tree (not end-to-end).

Results - Under LG+GC model, PF performs on par with ML

- We simulate 250 pairs of adjacent co-evolving sites
- We use a 400 × 400 substitution matrix to describe residue co-evolution, from CherryML
- Most ML methods would consider sites independent

Results - Under a co-evolution model, PF performs the best

- Phyloformer is the fastest method
- Phyloformer is even faster than FastME on its own
- Inference **speed** is **independent** from model **complexity**

Phylodynamics: evolutionary parameter inference

Phylodynamics vs Phylogenetics

- So far we have sampled trees from a parameterized distribution.
- These parameters themselves have a meaning in
 - epidemiology (*R*₀, duration),
 - ecology (biodiversification).

Phylodynamics from sequences (skip the tree)

- Existing likelihood-free phylodynamics methods start from phylogenies.
- Skipping the tree: faster, handles phylogenetic uncertainty and cases where there is no tree (e.g. recombination).

Differences with Phyloformer

Posterior inference on $(R_0, duration)$ with quantile regression

- Reminder: $\arg \min_{m} \sum_{i} |m R_0^i|$ estimates the median of $p(R_0)$.
- We are interested in the *conditional* median of $p(R_0|$ sequence).
- Our network m_{θ} minimizes arg min $_{\theta} \sum_{i} |m_{\theta}(\text{sequence}_{i}) R_{0}^{i}|$.
- Generalizes to other quantiles with the pinball loss (asymetric).

Accounting for dates

- In epidemiology, we have (and need) dated sequences.
- We incorporate this information through positional encodings.

Permutation invariance vs equivariance

- We want a single prediction per MSA, not per pair.
- We don't form pairs (better scaling).
- We use special CLS tokens for global pooling.

Transformers for EpiDemiological DYnamics (TEDDY)

Setting

- Sample $R_0 \sim \mathcal{U}(1,5)$ and duration $\sim \mathcal{U}(0.1,1)$.
- Then 50-leave trees from birth-death(R₀, duration)
- Then 1000-long sequences from these trees.

Parameter	BEAST2	Teddy (ours)	
R ₀	0.18	0.18	
duration	0.25	0.26	
Time for 1000 runs	17 days	50s	

- Same relative errors as BEAST2 (SOTA), 1e5 x faster.
- 95% credible intervals correctly estimated in both cases.

Laurent Jacob

(Non-)robustness to strong prior misspecification

• Network trained on $R_0 \in [1, 5] \times \gamma \in [0.1, 1]$.

- Performs poorly on data where $R_0 \in [5,8] \times \gamma \in [1,3]$.
- But behaves exactly like BEAST2.

Laurent Jacob

Summary

- Neural inference of evolutionary parameters.
- Sequences to tree (Phyloformer), or to upstream parameters (Teddy).
- Much faster than likelihood-based alternatives under simple models.
- Additionally, more accurate under complex models.

Perspectives

- Calibration assessment, full posteriors.
- Train and assess networks under more complex models.
- End-to-end from sequences to the tree.

Thank you.