Neural networks for likelihood-free inference in evolutionary genomics

Laurent Jacob

Phylogeny and Cophylogeny: Tree for a Tango, November 5th 2024

Acknowledgement

Anna Zhukova

Vincent Garot Luca Nesterenko Johanna Trost

Samuel Alizon Luc Blassel Bastien Boussau

Inference in evolutionary genomics

- **Observe** homologous sequences.
- **Infer** their evolutionary history: phylogeny, reproduction number...

Relies on probabilistic models that relate data to parameters.

Model $p($ sequences $|$ tree) $\qquad \qquad$ Point estimate tree
Observed sequences $\qquad \rightarrow \quad$ or Observed sequences prior $p(\text{tree})$ (optional) posterior $p(\text{tree}| \text{sequences})$

Likelihood-based inference

- Maximum likelihood: $\widehat{tree} = \arg max_{tree} p(\text{sequences}|tree)$.
- **•** Estimate or sample from the posterior p (tree sequences) (typically also involves computing p (sequences|tree)).

Likelihood-free inference

- **e** Realistic models: computing p (sequences|tree) is expensive.
- **But sampling from it can be cheap.**

Likelihood-free inference

- o Idea: perform inference by sampling, and not evaluating p (sequences|tree).
- Example: Approximate Bayesian Computation (ABC)

From Sunnåker et al. 2013

Amortized, likelihood-free neural inference

No summary statistics.

Unusual setting for supervised learning

Ordinarily used for induction on real-world data

Common misconceptions

• Proxy "before we get real data"?

• "What if your model is off"?

Unusual setting for supervised learning

Ordinarily used for induction on real-world data

Common misconceptions

- Proxy "before we get real data"?
	- \rightarrow simulated data is just our way to access the model.
- "What if your model is off"?
	- \rightarrow Valid concern, but not specific to neural estimation.

Neural inference for phylogenetics with Phyloformer

We need a learnable function that:

- o outputs a phylogenetic tree,
- takes as input a set of homologous sequences (MSA)

Neural inference for phylogenetics with Phyloformer

We need a learnable function that:

- o outputs a phylogenetic tree,
	- \rightarrow use evolutionary distances as a proxy.
- takes as input a set of homologous sequences (MSA)
	- \rightarrow use self-attention.

Phyloformer overview

One-hot encoding for aligned sequences

A single sequence:

A set of aligned sequences:

Our alphabet is actually $\{A, R, N, D, ..., Y, V, X, -\}$ so $d_0 = 22$.

Encoding pairs of aligned sequences

We choose to work on pairs of sequences (predict distance for each). We represent each pair by simply averaging over sequences.

Encoding **pairs** of aligned sequences

We choose to work on pairs of sequences (predict distance for each). We represent each pair by simply averaging over sequences.

> A A C G T . . . A T C C T . . . A 1 0.5 0 0 0 \ldots C 0 0 1 0.5 0 ... T 0 0.5 0 0 1 ... G 0 0 0 0 0 .5 0 ...

We now have a set of $\binom{n}{2}$ $\binom{n}{2} \times L$ amino acids encoded as $\mathbb{R}^{d=22}$ vectors.

This has no reason to be true in general (e.g. linear function)!

Need to retain some expressivity. E.g. average provides invariance but discards a lot of information.

Self-attention in a nutshell

Functions acting on unordered sets

- Updates each element as a linear combination of all of them.
- Output is a new representation of the same set. Iterate.

Updates

- Learnable part: function of two elements, giving weight of one in the update of the other.
- Provides equivariance, modularity to any cardinal.
- **Iteratively builds a set-aware representation for each pair.**
- We need equivariance both across pairs and sites.
- Alternate between column- and row-wise attention.

For each site, update each pair using all others.

- We need equivariance both across pairs and sites.
- Alternate between column- and row-wise attention.

For each pair, update each site using all others.

...

- \bullet "I'm an Alanine.
- **•** some homologous sequences have Serines,
- **•** many residues in the sequence are hydrophobic,
- this site is conserved,

"I'm an Alanine" \rightarrow

This representation is optimized with respect to the prediction objective.

Final step: predict pairwise distances

- **•** Predict one number for each residual.
- Pool across sites to obtain a single value per pair.
- Loss function happens at this level: compare to true distance on simulated data.

We then use a distance method to build the tree (not end-to-end).

Results - Under LG+GC model, PF performs on par with ML

- We simulate 250 pairs of adjacent co-evolving sites
- \bullet We use a 400 \times 400 substitution matrix to describe residue co-evolution, from CherryML
- **Most ML methods would** consider sites independent

- **Phyloformer** is the fastest method
- **•** Phyloformer is even faster than FastME on its own
- Inference speed is independent from model complexity

Phylodynamics: evolutionary parameter inference

Phylodynamics vs Phylogenetics

- So far we have sampled trees from a parameterized distribution.
- These parameters themselves have a meaning in
	- **e** epidemiology $(R_0,$ duration),
	- ecology (biodiversification).

Phylodynamics from sequences (skip the tree)

- Existing likelihood-free phylodynamics methods start from phylogenies.
- Skipping the tree: faster, handles phylogenetic uncertainty and cases where there is no tree (e.g. recombination).

Differences with Phyloformer

Posterior inference on $(R_0,$ duration) with quantile regression

- Reminder: arg $\min_{m}\sum_{i}|m-R_{0}^{i}|$ estimates the median of $\rho(R_{0})$.
- We are interested in the *conditional* median of $p(R_0)$ sequence).
- Our network m_θ minimizes arg $\min_\theta \sum_i |m_\theta(\text{sequence}_i) R_0^i|$.
- Generalizes to other quantiles with the pinball loss (asymetric).

Accounting for dates

- In epidemiology, we have (and need) dated sequences.
- We incorporate this information through positional encodings.

Permutation invariance vs equivariance

- We want a single prediction per MSA, not per pair.
- We don't form pairs (better scaling).
- We use special CLS tokens for global pooling.

Transformers for EpiDemiological DYnamics (TEDDY)

Setting

- Sample $R_0 \sim \mathcal{U}(1,5)$ and duration $\sim \mathcal{U}(0.1,1)$.
- \bullet Then 50-leave trees from birth-death(R_0 , duration)
- Then 1000-long sequences from these trees.

- Same relative errors as BEAST2 (SOTA), 1e5 x faster.
- 95% credible intervals correctly estimated in both cases.

$(Non-)robus$ tness to strong prior misspecification

• Network trained on $R_0 \in [1, 5] \times \gamma \in [0.1, 1]$.

- Performs poorly on data where $R_0 \in [5, 8] \times \gamma \in [1, 3]$. \bullet
- But behaves exactly like BEAST2.

Summary

- Neural inference of evolutionary parameters.
- Sequences to tree (Phyloformer), or to upstream parameters (Teddy).
- Much faster than likelihood-based alternatives under simple models.
- Additionally, more accurate under complex models.

Perspectives

- Calibration assessment, full posteriors.
- **•** Train and assess networks under more complex models.
- End-to-end from sequences to the tree.

Thank you.