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Can we predict new interactions?




Can we predict new interactions?

= Biodiversity - species persistence
= Ecosystem functioning

= Rewilding / ecological restoration
" |nvasive species

" Emerging diseases



Can we predict new interactions?
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Parasitic interactions

Butterfly larvae Plasmodium Tapeworm
host plant insect - bird fish
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Embracing colonizations: a
new paradigm for species
association dynamics.
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Figure 1. Examples of Strong Similarities between Ecological and Evolutionary Patterns Observed in
Parasite-Host and Insect-Plant Systems.



How do interactions evolve? - Data

20 possible interactions

Do these species interact?
4 species of group 1 -|
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5 species of group 2



How do interactions evolve? - Data

20 possible interactions

Do these species interact?

4 species of group 1
0 =no

= potentially
pA = yes

5 species of group 2



Kinds of available data
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Kinds of available data

Popazoglo and Boeger (2000) Neotropical
Monogenoidea 37. Folia Parasitologica

Species descriptions:
- one host
- one locality

- only available data for
many parasite clades
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Kinds of available data
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Fig. 1. — Phylogenetic and ecological data for Aglaiogyrodactylus spp. and their hosts, loricari-
id catfishes, in the Marumbi River, Parand, Brazil. The phylogenetic relationships of the clade

Patella et al. (2017) Life and Environment
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Kinds of available data

NATURAL Q Search ~ Membership
HISTORY
MUSEUM Visit Discover Take part Join and support Shop Schools

Home / Our science / Data / HOSTS

Compilation of observations:

HOSTS - a Database of the World's Lepidopteran Hostplants

- mixed quality

- false positives

- regional / global
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How do ecological interactions evolve? - Hypotheses




Ecological interactions and diversification

Escape and radiate Oscillation hypothesis
Ehrlich and Raven Janz and Nylin
(1964) (2008)




ARTICLE

Unifying host-associated diversification processes
using butterfly-plant networks
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Escape and radiate Oscillation hypothesis
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Modularity Nestedness
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ARTICLE

Unifying host-associated diversification processes
using butterfly-plant networks

Mariana P. Braga® ", Paulo R. Guimar3es Jr2, Christopher W. Wheat', Séren Nylin' & Niklas Janz'

Escape and radiate
Ehrlich and Raven (1964)

Oscillation hypothesis
Janz and Nylin (2008)

Modularity Nestedness

Empirical networks
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JOURNAL ARTICLE

Bayesian Inference of Ancestral Host—Parasite
Interactions under a Phylogenetic Model of Host
Repertoire Evolution &

Mariana P Braga ™, Michael J Landis, Soren Nylin, Niklas Janz, Fredrik Ronquist

Systematic Biology, Volume 69, Issue 6, November 2020, Pages 1149-1162,
https://doi.org/10.1093/sysbio/syaa019
Published: 19 March2020  Article history v
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Decompose the host and symbiont phylogeny
into phylogenetic distance matrices to test the
extent to which the interactions could have

been produced due to chance alone
cophylogenetic signal

Map a symbiont phylogeny onto a host
phylogeny using the classic cophylogenetic
events. Each of these events is assigned a cost
to determine the lowest cost mapping
cospeciation X host-switch speciation

Use probabilistic models to describe the
processes that produce observed
cophylogenetic patterns
probability of ancestral states and events

Method System | Phylogeny | Interactions
PATTERN-BASED STATISTICS
Mantel test' S B,D 1
Wilcoxon test? S B,D 1
Parafit® S B,D M
MRCAlink* S B,D M
PACo® D,S B,D M
Random TaPas® D,S B M
EVENT-SCORING METHODS
BPA” D T 1M
TreeMap® D T 1
Jane” D B,D M
Tarzan'® D D M
COALA! D B,D M
Jungles'? D B,D 1
eMPRess"* D B,D M
DIVA' D T M
CoRe-PA'® D D M
GENERATIVE MODEL-BASED METHODS
Bayesian host switching'® D D 1
DEC' D D M
ALE'® D D 1
Host repertoire evolution'? D D M I

Dismukes et al. 2022 Cophylogenetic Methods to Untangle
the Evolutionary History of Ecological Interactions. AREES
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Modeling the evolution of interactions

?2 0?2 2?2 7?2 7?2 7?2 27?2 77 = One host — No, multiple
= QOneatatime — Independence
= Number of hosts — Which hosts?

(host range)
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Modeling the evolution of interactions

HOST REPERTOIRE
HOW MANY HOSTS (RANGE) + WHICH HOSTS

0 non-host
1 potential host (e.g. larvae is able to feed)

2 actual host (used in nature)

hi = {Or 112}
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Modeling the evolution of interactions

HOST REPERTOIRE
HOW MANY HOSTS (RANGE) + WHICH HOSTS

0 non-host

2 actual host (used in nature)

hi = {0,2}
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Bayesian Inference of Ancestral Host-Parasite Interactions under a Phylogenetic Model of
Host Repertoire Evolution

MARIANA P. BRagal"2*, MICHAEL J. LANDIS®3, SOREN NYLIN!, NIKLAS JANZ! AND FREDRIK RONQUIST*

a)
B rmeme e EE - Implemented in RevBayes
E 2300 - Species can use multiple hosts at any given time
E 22000 22000
e - Can include potential hosts
- Phylogenetic proximity between hosts
<)

o|lo|o|o
o|lo|o|o

Extant interactions



Hypothetical extant interactions
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Inference of historical interactions
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Modeling the evolution of interactions
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Network evolution
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Network evolution
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Inference of historical interactions
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Ancestral networks
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Module separation

= Two distinct modules
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Two new modules
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All big modules are connected
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Network grows with the same structure
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Network grows with the same structure
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= Means to test ideas about evolution
of ecological networks

= New probabilistic representation that makes g *{- %
fuller use of the posterior distribution of
ancestral states

= Reconstruct specific host shifts, host-range
expansions, and recolonizations that have
shaped the Pieridae-angiosperm network

N



Analysis tutorial
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Reconstructing Host Repertoire Evolution

Inference of ancestral ecological interactions

Mariana P. Braga and Michael J. Landis

Last modified on November 5, 2020

® Overview

Prerequisites

« Getting Started with RevBayes
and Rev Language Syntax

e Introduction to Markov chain
Monte Carlo (MCMC) Sampling

Table of Contents

o Introduction

e Model Overview

o Hosts, parasites, and their
interactions

o Host gain and loss

Dataset - Butterfly-plant

interactions

Analysis - Butterfly-plant

interactions

Results

2-state model

@® Data files and scripts

Data Files
Nymphalini.phy
angio_25tips_bl1.phy
angio_25tips_time.phy
interaction_matrix.nex
out.bl1.log

out.time.log

Scripts
e ancestral states.R

Introduction

Extant ecological interactions are the result of a long history of coevolution between interacting lineages. In the
case of host-parasite systems, species associations are continuously evolving via gains and losses of hosts.
Given that parasites are usually specialized to their hosts, most methods developed to study coevolution focus on
congruence between host and parasite phylogenies and use cospeciation as the null expectation (missing
reference). Recent years have seen increasing evidence that parasites change what hosts they target much more
often than previously thought. Thus, new methods are required to appropriately reconstruct coevolutionary
histories. Below, we describe a model of host-parasite coevolution that was introduced in (missing reference),
which is based on the Dispersal-Extinction-Cladogenesis approach Ree et al. (2005) used to model geographic
range evolution (see Introduction to Phylogenetic Models of Discrete Biogeography for an overview of the DEC
model). However, in this first version, the model does not include evolutionary changes during parasite
cladogenesis. This tutorial reviews the modeling concepts developed in (missing reference) then describes how to
model host repertoire evolution and reproduce the results published in the paper.

Model Overview

We wish to model the co-evolution of ecological interactions between M extant parasite taxa and N host taxa in a
phylogenetic context. Each parasite uses one or more hosts, which we encode as a character set called the host
repertoire. During the course of evolution, any parasite lineage may gain or lose a host from its repertoire or
modify whether a host is actually or potentially used by the parasite. Furthermore, it is likely that parasites have a
phylogenetic preference when expanding their host repertoires, favoring species that are closely related to
species they parasitize over distantly related species.

This tutorial follows the modeling strategy developed in (missing reference), which identifies three central
challenges to modeling host repertoire evolution: (1) defining the host repertoire character, (2) defining an event-
based model for how host repertoires evolve in terms of gain and loss rates and phylogenetic distances among
hosts in the repertoire, and (3) designing an inference method to fit our model to data. The next sections gives
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Studies using the host repertoire model

* Ancestral hosts of all butterflies

* Color patterns (mimicry)

e PBeetles and microbiome

* Fish and parasitic mussels

* Beetles — host plant
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Can we predict new interactions?

= Biodiversity - species persistence
= Ecosystem functioning

= Rewilding / ecological restoration
" |nvasive species

" Emerging diseases
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New model implementation

e®e M- < > [ )] e & treeppl.org C: ¢ ©) lﬁ + 83

— TreePPL

The aim of the TreePPL project is to develop a domain-specific PPL for statistical phylogenetics.

More information can be found here.

treeppl.org

Input

Output
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